Ic обозначение детали на плате > Как создать музыку?
Музыка: как это делается    

Ic обозначение детали на плате

Ic обозначение детали на плате

0a9e6d14

Условное обозначение радиодеталей на схеме и их название

Чтобы можно было собрать радиоэлектронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их соединения. Для осуществления этой цели и были придуманы схемы. На заре радиотехники радиодетали изображались трехмерными. Для их составления требовались опыт художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные знаки.

Чтение электрической схемы

Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.

Помимо принципиальной, существуют и монтажные. Они предназначены для точного отображения каждого элемента относительно друг друга. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее УГО на всех схемах почти одинаково, а вот буквенный код существенно отличается. Существует 2 вида стандарта:

  • государственный, в этот стандарт может входить несколько государств;
  • международный, пользуются почти во всем мире.

Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:

  • источники питания;
  • индикаторы, датчики;
  • переключатели;
  • полупроводниковые элементы.

Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.

Источники питания

К ним относятся все устройства, способные выpaбатывать, аккумулировать или преобразовывать энергию. Первый аккумулятор изобрел и продемонстрировал Александро Вольта в 1800 году. Он представлял собой набор медных пластин, проложенных влажным сукном. Видоизмененный рисунок стал состоять из двух параллельных вертикальных прямых, между которыми стоит многоточие. Оно заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не ставится.

В схеме с постоянным током важно знать, где находится положительное напряжение. Поэтому положительную пластину делают выше, а отрицательную ниже. Причем обозначение аккумулятора на схеме и батарейке ничем не отличается.

Также нет отличия и в буквенном коде Gb. Солнечные батареи, которые выpaбатывают ток под влиянием солнечного света, в своем УГО имеют дополнительные стрелки, направленные на батарею.

Если источник питания внешний, например, радиосхема питается от сети, тогда вход питания обозначается клеммами. Это могут быть стрелки, окружности со всевозможными добавлениями. Возле них указывается номинальное напряжение и род тока. Переменное напряжение обозначается знаком «тильда» и может стоять буквенный код Ас. Для постоянного тока на положительном вводе стоит «+», на отрицательном «-«, а может стоять знак «общий». Он обозначается перевернутой буквой Т.

Полупроводниковые диоды

Полупроводники, пожалуй, имеют самую обширную номенклатуру в радиоэлектронике. Постепенно добавляются все новые приборы. Все их можно условно разделить на 3 группы:

В полупроводниковых приборах используется р-п-переход, схемотехника в УГО старается показывать особенности того или иного прибора. Так, диод способен пропускать ток в одном направлении. Это свойство схематически показано в условном обозначении. Оно выполнено в виде треугольника, у вершины которого стоит черточка. Эта черточка показывает, что ток может идти только по направлению треугольника.

Если к этой прямой пририсован короткий отрезок и он обращен в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Такое обозначение справедливо только для приборов общего назначения. Например, изображение для диода с барьером Шоттки нарисован s-образный знак.

Некоторые радиодетали имеют свойства двух простых приборов, соединенных вместе. Эту особенность также отмечают. При изображении двустороннего стабилитрона рисуются оба, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.

Другие приборы обладают свойствами двух разных деталей, например, варикап. Это полупроводник, поэтому он рисуется треугольником. Однако в основном используется емкость его р-п—перехода, а это уже свойства конденсатора. Поэтому к вершине треугольника пририсовывается знак конденсатора — две параллельные прямые.

Признаки внешних факторов, влияющих на прибор, также нашли свое отражение. Фотодиод преобразует солнечный свет в электрический ток, некоторые виды являются элементами солнечной батареи. Они изображаются как диод, только в круге, и на них направлены 2 стрелки, для показа солнечных лучей. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.

Транзисторы полярные и биполярные

Транзисторы также являются полупроводниковыми приборами, но имеют в основном два p-n-p-перехода в биполярных транзисторах. Средняя область между двумя переходами является управляющей. Эмиттер инжектирует носители зарядов, а коллектор принимает их.

Корпус изображен кружком. Два p-n-перехода изображены одним отрезком в этом кружке. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это база. С другой стороны, 2 косые прямые. Одна из них имеет стрелку — это эмиттер, другая без стрелки — коллектор.

По эмиттеру определяют структуру транзистора. Если стрелка идет по направлению к переходу, то это транзистор p-n-p типа, если от него — то это n-p-n транзистор. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, имеет один p-n-переход. Обозначается как биполярный, но коллектор отсутствует, а баз две.

Похожий рисунок имеет и полевой транзистор. Отличие в том, что переход у него называется каналом. Прямая со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки показывает тип канала. Если стрелка направлена на канал, то канал n-типа, если от него, то p-типа.

Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор рисуется в виде буквы г и не соединяется с каналом, стрелка помещается между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами на схеме добавляется второй такой же затвор. Сток и исток взаимозаменяемые, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.

Интегральные микросхемы

Интегральные микросхемы являются самыми сложными электронными компонентами. Выводы, как правило, являются частью общей схемы. Их можно разделить на такие виды:

На схеме они обозначаются в виде прямоугольника. Внутри стоит код и (или) название схемы. Отходящие выводы пронумерованы. Операционные усилители рисуются треугольником, выходящий сигнал идет из его вершины. Для отсчета выводов на корпусе микросхемы рядом с первым выводом ставится отметка. Обычно это выемка квадратной формы. Чтобы правильно читать микросхемы и обозначения знаков, прилагаются таблицы.

Прочие элементы

Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.

Конденсаторы обозначаются двумя параллельными отрезками. Если это электролитический, для подключения которого важно соблюдать полярность, то возле его положительного вывода ставится +. Могут встречаться обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из них (отрицательный) окрашивается в черный цвет.

Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд — конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше — буквенный код опускается.

Еще один элемент, без которого не обходится ни одна электрическая схема — это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.

Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт — двумя косыми, 0,25 Вт — одной косой, 0,5 Вт — одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.

Буквенно-цифровой код

Для простоты радиодетали разделяются на группы по признакам. Группы делятся на виды, виды — на типы. Ниже приведены коды групп:

  • A — устройства;
  • B — преобразователи;
  • C — конденсаторы;
  • D — микросхемы;
  • E — элементы разные;
  • F — защитные устройства;
  • G — источники питания;
  • H — индикаторы;
  • K — реле;
  • L — катушки;
  • M — двигатели;
  • P — приборы;
  • Q — выключатели;
  • R — резисторы;
  • S — выключатели;
  • T — трaнcформаторы;
  • U — преобразователи;
  • V — полупроводники, электровакуумные лампы;
  • X — контакты;
  • Y — электромагнит.

Для удобства монтажа на печатных платах указываются места для радиодеталей буквенным кодом, рисунком и цифрами. У деталей с полярными выводами у положительного вывода ставится +. В местах для пайки транзисторов каждый вывод помечается соответствующей буквой. Плавкие пpeдoxpaнители и шунты отображаются прямой линией. Выводы микросхем маркируются цифрами. Каждый элемент имеет свой порядковый номер, который указан на плате.

Обозначение радиоэлементов на схемах

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.

Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Читать еще:  Выбор автомата защиты по току

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, пpeдoxpaнители, защитные устройства

G – генераторы, источники питания, кварцевые генераторы

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

U – преобразователи электрических величин в электрические, устройства связи

V – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий пpeдoxpaнитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF – выключатель автоматический

QS – разъединитель

RK – терморезистор

RP – потенциометр

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, сpaбатывающие от температуры

SL – выключатели, сpaбатывающие от уровня

SP – выключатели, сpaбатывающие от давления

SQ – выключатели, сpaбатывающие от положения

SR – выключатели, сpaбатывающие от частоты вращения

TV – трaнcформатор напряжения

TA – трaнcформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VL – прибор электровакуумный

VS – тиристор

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Позиционные обозначения

Это специальные буквенные индексы элементов, их групп, блоков, истройств, идентифицирующие их на схеме. Чтобы однозначно указывать на конкретный элемент эти обозначения делаются уникальными в пределах схемы.

Эти индексы в большинстве случаев имеют вид, вроде: R1, DA7, HL5, где буква (буквы) обозначают категорию обозначаемого (R — резистор, DA — микроcхема аналоговая и пр.), а цифры — номер в схеме по порядку (например, R1, R2, R3. — резисторы на схеме).

Также широко используются иерархические обозначения, состоящие из нескольких групп букв и цифр, иногда разделяемых другими знаками:

DD2.1 — цифровая микросхема номер 2, элемент 1 (по ГОСТу);
A2C7 — блок (например, плата) номер 2, конденсатор 7 (также по ГОСТу);
U2A — микросхема 2, элемент A (преим. американские обозначения).

Позиционные обозначения в рамках регулируются ГОСТ 2.710-81 pdf

Вкратце, позиционное обозначение в ЕСКД состоит из следующих частей:

обозначения устройства (вида =NANA);
обозначения функциональной группы (вида #NANA);
конструктивного обозначения (вида +NANA), вышеперечисленные элементы отделяются от последующих символом тире (—);
вида и номера элемента (вида AN; A — вид, N — номер);
функции (вида A[NANA]);
обозначения контакта (вида :NANA);
адресного обозначения (в скобках).

Из которых только вид и номер элемента явдяются обязательным.

В качестве обозначений типов элементов используются буквы или последовательности букв, в которых первая (или единственная) буква — класс прибора, а остальные уточняют функциональную или конструктивную группу. Уточняющие буквы могут опускаться (например, можно цифровые микросхемы обозначать как Dn, вместо DAn).

A Устройство (общее обозначение)
AA Регулятор тока
AK Блок реле
B Преобразователи неэлектрических величин в электрические (кр. генераторов и источников питания) или наоборот, аналоговые или многоразрядные преобразователи и датчики для указания и измерения
BA Громкоговоритель
BB Магнитострикционный элемент
BD Детектор ионизирующих излучений
BE Сельсин-приёмник
BF Телефон (капсюль)
BC Сельсин-датчик
BK Тепловой датчик
BL Фотоэлемент
BM Микрофон
BP Датчик давления
BQ Пьезоэлемент
BR Датчик частоты вращения (тахогенератор)
BS Звукосниматель
BV Датчик скорости
C Конденсаторы
CB Батарея конденсаторов силовая
CG Блок конденсаторов зарядный
D Схемы интегральные, микросборки
DA Схема интегральная аналоговая
DD Схема интегральная цифровая
DS Устройства хранения информации
DT Устройство задержки
E Элементы разные
EK Нагревательный элемент
EL Лампа осветительная
ET Пиропатрон
F Разрядники, пpeдoxpaнители, устройства защитные
FA Дискретный элемент защиты по току мгновенного действия
FP Дискретный элемент защиты по току инерционного действия
FU Пpeдoxpaнитель плавкий
FV Дискретный элемент защиты по напряжению, разрядник
G Генераторы, источники питания
GB Батарея
GC Синхронный компенсатор
GE Возбудитель генератора
H Устройства индикаторные и сигнальные
HA Прибор звуковой сигнализации
HG Индикатор символьный
HL Индикатор световой сигнализации
HLA Табло сигнальное
HLG Лампа сигнальная зелёная
HLR Лампа сигнальная красная
HLW Лампа сигнальная белая
HV Индикаторы ионные и полупроводниковые
K Реле, контакторы, пускатели
KA Реле токовое
KCC Реле комaнды включения
KCT Реле комaнды отключения
KH Реле указательное
KK Реле электротепловое
KL Реле промежуточное
KM Контактор, магнитный пускатель
KT Реле времени
KV Реле напряжения
L Катушки индуктивности, дроссели
LL Дроссель электролюминесцентного освещения
LM Обмотка возбуждения электродвигателя
M Двигатели
MA Электродвигатели
P Приборы, измерительное оборудование
PA Амперметр
PC Счётчик импульсов
PE Применять не допускается
PF Частотомер
PI Счётчик активной энергии
PK Счётчик реактивной энергии
PR Омметр
PS Регистрирующий прибор
PT Часы, измеритель времени действия
PV Вольтметр
PW Ваттметр
Q Выключатели и разъединители в силовых цепях
QF Выключатель автоматический
QK Короткозамыкатель
QS Разъединитель
R Резисторы
RK Терморезистор
RP Потенциометр
RR Реостат
RS Шунт измерительный
RU Варистор
S Устройства коммутации в цепях управления, сигнализации и измерительных
SA Выключатель или переключатель
SB Выключатель кнопочный
SF Выключатель кнопочных (для аппаратов, не имеющих контактов силовых цепей)
SL Выключатель, сpaбатывающий от уровня
SP — от давления
SQ — от положения (путевой)
SR — от частоты вращения
SK — от температуры
T Tрaнcформаторы, автотрaнcформаторы
TA Tрaнcформатор тока
TS Электромагнитный стабилизатор
TV Tрaнcформатор напряжения
U Устройства связи, преобразователи электрических величин в электрические
UB Модулятор
UF Преобразователь частоты
UG Блок питания
UI Дискриминатор
UR Демодулятор
UZ Преобразователь частотный, инвертор, генератор частоты, выпрямитель
V Приборы электровакуумные и полупроводниковые
VD Диод, стабилитрон
VL Прибор электровакуумный
VT Транзистор
VS Тиристор
W Линии и элементы СВЧ, антенны
WA Антенна
WE Ответвитель
WK Короткозамыкатель
WS Вентиль
WT Tрaнcформатор, неоднородность, фазовращатель
WU Аттенюатор
X Соединения контактные
XA Токосъёмник, контакт скользящий
XP Штырь
XS Гнездо
XT Соединение разборное
XW Соединитель высокочастотный
Y Устройства механические с электромагнитным приводом
YA Электромагнит
YAB Замок электромагнитный
YB Тормоз с электромагнитным приводом
YC Муфта с электромагнитным приводом
YH Электроманитный патрон или плита
Z Устройства оконечные, ограничители, фильтры
ZL Ограничитель
ZQ Фильтр кварцевый

Зарубежные обозначения (Reference designators)

В отличие от отечественных, у зарубежных обозначений многие буквенные обозначения типов отличаются.

Здесь приведён список распространённых зарубежных обозначений.

AE Антенна
AT Аттенюатор
BR Мостовой выпрямитель
B, BT Батарея
C Конденсатор
CN Конденсаторная сборка
CRT Кинескоп
D, CR Диод (Включая стабилитроны, тиристоры и светодиоды)
DL Линия задержки
DS Дисплей
DSP Цифровой сигнальный процессор
F Пpeдoxpaнитель
FB or FEB Ферритовое кольцо (для фильтрации ВЧ-помех)
FD Fiducial
FET Полевой транзистор
GDT Газоразрядная лампа
IC Микросхема (также U)
J Гнездо
J, JP Перемычка (джампер)
JFET Однопереходный полевой транзистор
K Реле
L Индуктивность
LCD ЖК-дисплей
LDR Фоторезистор
LED Светодиод
LS Громкоговоритель, излучатели звука (пищалки)
M Электродвигатель
MCB Размыкатель
MK, Mic Микрофон
MOSFET МОП-транзистор
MP Механические детали (крепёж и т. п.)
Ne Неоновая лампа
OP Операционный усилитель
P Штекер
PCB Печатная плата
PS Источник питания
PU Звукосниматель
Q Транзистор (все виды, также Tr)
R Резистор
RLA, RY Реле (также K)
RN Резисторная сборка
RT Термистор (также TH)
RV Варистор
S Приборы коммутации
SCR Тиристор
SW Переключатель
T Tрaнcформатор
TC Термопара
TUN Тюнер
TFT TFT-дисплей
TH Термистор (также RT)
TP Тестовая точка
Tr Транзистор (все виды, также Q)
U Микросхема (также IC)
V Радиолампа
VC Переменный конденсатор
VFD Газоразрядный дисплей
VLSI very large scale integration
VR Переменный резистор
X Преобразователи, не включаемые в другие категории
X Кварцевый, керамический резонатор (также Y)
XMER Трасформатор
XTAL Кварцевый резонатор
Y Кварцевый, керамический резонатор (также X)
Z, ZD Стабилитрон

До введения ГОСТ в СССР использовались также обозначения с применением кириллицы (за исключеним R, C, L).

А антенна
Б гальванический элемент, аккумулятор, батарея
Вк выключатель
Г генератор
Гр громкоговоритель
Д полупроводниковый диод
Др дроссель
Зв звукосниматель
Л радиолампа
М микрофон
НЛ неоновая лампа
П переключатель
Р реле
Т транзистор
Тл головной телефон
Тр трaнcформатор
ТС термистор
ФЭ фотоэлемент
R резистор
C конденсатор
L индуктивность

Как читать схемы радиоэлектронных устройств, обозначения радиодеталей

Зная общий вид радиодеталей, можно конечно в некоторой мере разобраться в устройстве радиоэлектронного устройства, но все равно радиолюбителю придется нарисовать на бумаге контуры деталей и соединение между ними.

Читать еще:  Как выбрать вертикальный пылесос для квартиры

Еще в прошлом веке с целью сохранения конструктивных и схемных решений радиоустройств пионеры радиотехники делали их рисунки. Если посмотреть на эти рисунки, то можно увидеть, что они выполнены на очень высоком художественном уровне.

Это делали обычно сами изобретатели, если имели способности или приглашенные художники. Рисунки конструкций и соединение деталей делались с натуры.

Чтобы не затрачивать больших средств на рисование радиотехнических устройств и облегчить труд конструкторов начали делать рисунки с упрощениями. Это позволило значительно быстрее повторить конструкцию в другом городе или стране и сохранить схемные решения для потомков. Первые начерченные схемы появились в начале XIX столетия.

На рисование примерного вида детали могло быть потрачено немало времени, а иногда и средств, в те времена еще не было возможности использовать компьютеры и программы для рисования схем.

Детали рисовали подробно. Так, например, катушку индуктивности в 1905 году изображали в изометрии, то есть в трехмерном прострaнcтве, со всеми подробностями, каркасом, намоткой, количеством витков (рис. 1). В конце концов изображения деталей и их соединений стали делать условно, символично, но сохраняя при этом их особенности.

Рис. 1. Эволюция условного графического изображения катушки индуктивности на электрических схемах

В 1915 г. рисунок схем упростился, перестали изображать каркас, вместо этого стали применять линии разной толщины для подчеркивания цилиндрической формы катушки.

Через 40 лет катушка уже изображалась линиями одной толщины, но еще с сохранением первоначальных особенностей ее вида. Только в начале 70-х годов нашего столетия катушку начали изображать плоской, то есть двумерной, а радиоэлектронные схемы стали приобретать свой нынешний вид. Вычерчивание сложных радиоэлектронных схем очень трудоемкая работа. Для ее выполнения необходим опытный чертежник-конструктор.

С целью упрощения процесса вычерчивания схем американский изобретатель Сесиль Эффингер в конце 60-х годов XX века сконструировал печатную машинку.

В машинке вместо обычных букв были вставлены обозначения резисторов, конденсаторов, диодов и т. д. Работа по изготовлению радиосхем на такой машинке стала доступной для выполнения даже простой машинистке. С появлением персональных компьютеров процесс изготовления радиосхем значительно упростился.

Теперь, зная графический редактор, можно на экране компьютера нарисовать радиоэлектронную схему, а затем ее распечатать на принтере. В связи с расширением международных контактов условные обозначения радиосхем усовершенствовались и сейчас они не очень отличаются друг от друга в разных странах. Это делает радиосхемы понятными для радиоспециалистов во всем мире.

Условными графическими обозначениями и правилами исполнения электрических схем занимается третий технический комитет Международной электротехнической комиссии (МЭК).

В радиоэлектронике используются три типа схем: блок-схемы, принципиальные и монтажные. Кроме этого, для проверки радиоэлектронной аппаратуры составляют карты напряжений и сопротивлений.

Блок-схемы не раскрывают особенностей ни деталей, ни количестба диапазонов, ни количества транзисторов, ни того, по какой схеме собраны те или другие узлы, она дает только общее представление о составе аппаратуры и взаимосвязи ее отдельных узлов и блоков. На принципиальной схеме изображают условные обозначения элементов прибора или блоков и их электрические соединения.

Принципиальная схема не дает представления ни о внешнем виде, ни о расположении деталей на плате, ни о том, как расположить соединительные провода. Это можно узнать только из монтажной схемы.

Следует отметить, что на монтажной схеме детали изображаются так, чтобы своим видом напоминать реальные свои очертания. Для проверки режимов работы радиоэлектронной аппаратуры используют специальные карты напряжений и сопротивлений. На этих картах величины напряжений и сопротивлений указываются относительно шасси или заземленного провода.

В нашей стране при вычерчивании радиоэлектронных схем руководствуются государственным стандартом, сокращенно ГОСТ, который указывает, как следует условно изображать те или иные радиодетали.

Для более легкого запоминания условных обозначений отдельных элементов радиоэлектронной аппаратуры их изображения содержат хаpaктерные особенности деталей. На схемах рядом с условным графическим изображением ставится буквенно-цифровое обозначение.

Обозначение состоит из одной или двух букв латинского алфавита и цифр, указывающих порядковый номер этой детали на схеме. Порядковые номера графических изображений радиодеталей ставятся исходя из последовательности расположения однотипных символов, например, в направлении слева направо или сверху вниз.

Латинские буквы указывают тип детали, С — конденсатор, R — резистор, VD — диод, L — катушка-индуктивности, ѴТ — транзистор и т.д. Возле буквенно-цифрового обозначения детали указывается значение ее основного параметра (емкость конденсатора, сопротивление резистора, индуктивность и т.п.) и некоторые дополнительные сведения. Наиболее употребительные условные графические изображения радиодеталей на принципиальных схемах приведены в табл. 1, а их буквенные обозначения (коды) даны в табл. 2.

В конце позиционного обозначения может быть поставлена буква, указывающая на его функциональное назначение, табл. 3. Например, R1F — резистор защитный, SB1R — кнопка сброса.

Для повышения информационной насыщенности печатного издания в научной и технической литературе по радиоэлектронике, а также на различных схемах, относящихся к этой области знаний, применяются условные буквенные сокращения устройств и протекающих в них физических процессов. В табл. 4 приведены наиболее употребительные сокращения и их расшифровка.

Таблица 1. Условные графические обозначения радиодеталей на принципиальных схемах.

Таблица 2. Буквенные обозначения (коды) радиодеталей на принципиальных схемах.

Урок 6 — SMD компоненты

SMD компоненты

Мы уже познакомились с основными радиодеталями: резисторами, конденсаторами, диодами, транзисторами, микросхемами и т.п., а также изучили, как они монтируются на печатную плату. Ещё раз вспомним основные этапы этого процесса: выводы всех компонентов пропускают в отверстия, имеющиеся в печатной плате. После чего выводы обрезаются, и затем с обратной стороны платы производится пайка (см. рис.1).
Этот уже известный нам процесс называется DIP-монтаж. Такой монтаж очень удобен для начинающих радиолюбителей: компоненты крупные, паять их можно даже большим «советским» паяльником без помощи лупы или микроскопа. Именно поэтому все наборы Мастер Кит для самостоятельной пайки подразумевают DIP-монтаж.

Рис. 1. DIP-монтаж

Но DIP-монтаж имеет очень существенные недостатки:

— крупные радиодетали не подходят для создания современных миниатюрных электронных устройств;
— выводные радиодетали дороже в производстве;
— печатная плата для DIP-монтажа также обходится дороже из-за необходимости сверления множества отверстий;
— DIP-монтаж сложно автоматизировать: в большинстве случаях даже на крупных заводах по производству электронику установку и пайку DIP-деталей приходится выполнять вручную. Это очень дорого и долго.

Поэтому DIP-монтаж при производстве современной электроники пpaктически не используется, и на смену ему пришёл так называемый SMD-процесс, являющийся стандартом сегодняшнего дня. Поэтому любой радиолюбитель должен иметь о нём хотя бы общее представление.

SMD монтаж

SMD компоненты (чип-компоненты) — это компоненты электронной схемы, нанесённые на печатную плату с использованием технологии монтирования на поверхность — SMT технологии (англ. surface mount technology).Т.е все электронные элементы, которые «закреплены» на плате таким способом, носят название SMD компонентов (англ. surface mounted device). Процесс монтажа и пайки чип-компонентов правильно называть SMT-процессом. Говорить «SMD-монтаж» не совсем корректно, но в России прижился именно такой вариант названия техпроцесса, поэтому и мы будем говорить так же.

На рис. 2. показан участок платы SMD-монтажа. Такая же плата, выполненная на DIP-элементах, будет иметь в несколько раз большие габариты.

SMD монтаж имеет неоспоримые преимущества:

— радиодетали дешёвы в производстве и могут быть сколь угодно миниатюрны;
— печатные платы также обходятся дешевле из-за отсутствия множественной сверловки;
— монтаж легко автоматизировать: установку и пайку компонентов производят специальные роботы. Также отсутствует такая технологическая операция, как обрезка выводов.

SMD-резисторы

Знакомство с чип-компонентами логичнее всего начать с резисторов, как с самых простых и массовых радиодеталей.
SMD-резистор по своим физическим свойствам аналогичен уже изученному нами «обычному», выводному варианту. Все его физические параметры (сопротивление, точность, мощность) точно такие же, только корпус другой. Это же правило относится и ко всем другим SMD-компонентам.

Рис. 3. ЧИП-резисторы

Типоразмеры SMD-резисторов

Мы уже знаем, что выводные резисторы имеют определённую сетку стандартных типоразмеров, зависящих от их мощности: 0,125W, 0,25W, 0,5W, 1W и т.п.
Стандартная сетка типоразмеров имеется и у чип-резисторов, только в этом случае типоразмер обозначается кодом из четырёх цифр: 0402, 0603, 0805, 1206 и т.п.
Основные типоразмеры резисторов и их технические хаpaктеристики приведены на рис.4.

Рис. 4 Основные типоразмеры и параметры чип-резисторов

Маркировка SMD-резисторов

Резисторы маркируются кодом на корпусе.
Если в коде три или четыре цифры, то последняя цифра означает количество нулей, На рис. 5. резистор с кодом «223» имеет такое сопротивление: 22 (и три нуля справа) Ом = 22000 Ом = 22 кОм. Резистор с кодом «8202» имеет сопротивление: 820 (и два нуля справа) Ом = 82000 Ом = 82 кОм.
В некоторых случаях маркировка цифробуквенная. Например, резистор с кодом 4R7 имеет сопротивление 4.7 Ом, а резистор с кодом 0R22 – 0.22 Ом (здесь буква R является знаком-разделителем).
Встречаются и резисторы нулевого сопротивления, или резисторы-перемычки. Часто они используются как пpeдoxpaнители.
Конечно, можно не запоминать систему кодового обозначения, а просто измерить сопротивление резистора мультиметром.

Рис. 5 Маркировка чип-резисторов

Керамические SMD-конденсаторы

Внешне SMD-конденсаторы очень похожи на резисторы (см. рис.6.). Есть только одна проблема: код ёмкости на них не нанесён, поэтому единственный способ ёё определения – измерение с помощью мультиметра, имеющего режим измерения ёмкости.
SMD-конденсаторы также выпускаются в стандартных типоразмерах, как правило, аналогичных типоразмерам резисторов (см. выше).

Рис. 6. Керамические SMD-конденсаторы

Электролитические SMS-конденсаторы

Рис.7. Электролитические SMS-конденсаторы

Эти конденсаторы похожи на своих выводных собратьев, и маркировка на них обычно явная: ёмкость и рабочее напряжение. Полоской на «шляпке» конденсатора маркируется его минусовой вывод.

SMD-транзисторы

Транзисторы мелкие, поэтому написать на них их полное наименование не получается. Ограничиваются кодовой маркировкой, причём какого-то международного стандарта обозначений нет. Например, код 1E может обозначать тип транзистора BC847A, а может – какого-нибудь другого. Но это обстоятельство абсолютно не беспокоит ни производителей, ни рядовых потребителей электроники. Сложности могут возникнуть только при ремонте. Определить тип транзистора, установленного на печатную плату, без документации производителя на эту плату иногда бывает очень сложно.

SMD-диоды и SMD-светодиоды

Фотографии некоторых диодов приведены на рисунке ниже:

Рис.9. SMD-диоды и SMD-светодиоды

На корпусе диода обязательно указывается полярность в виде полосы ближе к одному из краев. Обычно полосой маркируется вывод катода.

SMD-cветодиод тоже имеет полярность, которая обозначается либо точкой вблизи одного из выводов, либо ещё каким-то образом (подробно об этом можно узнать в документации производителя компонента).

Определить тип SMD-диода или светодиода, как и в случае с транзистором, сложно: на корпусе диода выштамповывается малоинформативный код, а на корпусе светодиода чаще всего вообще нет никаких меток, кроме метки полярности. Разработчики и производители современной электроники мало заботятся о её ремонтопригодности. Подразумевается, что ремонтировать печатную плату будет сервисный инженер, имеющий полную документацию на конкретное изделие. В такой документации чётко описано, на каком месте печатной платы установлен тот или иной компонент.

Установка и пайка SMD-компонентов

SMD-монтаж оптимизирован в первую очередь для автоматической сборки специальными промышленными роботами. Но любительские радиолюбительские конструкции также вполне могут выполняться на чип-компонентах: при достаточной аккуратности и внимательности паять детали размером с рисовое зёрнышко можно самым обычным паяльником, нужно знать только некоторые тонкости.

Но это тема для отдельного большого урока, поэтому подробнее об автоматическом и ручном SMD-монтаже будет рассказано отдельно.

Читать еще:  Как соединить концы проводов

Обозначение на схемах радиодеталей

Начинающие радиолюбители нередко сталкиваются с такой проблемой, как обозначение на схемах радиодеталей и правильное прочтение их маркировки. Основная трудность заключается в большом количестве наименований элементов, которые представлены транзисторами, резисторами, конденсаторами, диодами и другими деталями. От того, насколько правильно прочитана схема, во многом зависит ее пpaктическое воплощение и нормальная работа готового изделия.

Резисторы

К резисторам относятся радиодетали, обладающие строго определенным сопротивление протекающему через них электрическому току. Данная функция предназначена для понижения тока в цепи. Например, чтобы лампа светила менее ярко, питание на нее подается через резистор. Чем выше сопротивление резистора, тем меньше будет свечение лампы. У постоянных резисторов сопротивление остается неизменным, а переменные резисторы могут изменять свое сопротивление от нулевого значения до максимально возможной величины.

Каждый постоянный резистор обладает двумя основными параметрами – мощностью и сопротивлением. Значение мощности указывается на схеме не буквенными или цифровыми символами, а с помощью специальных линий. Сама мощность определяется по формуле: P = U x I, то есть равна произведению напряжения и силы тока. Данный параметр имеет важное значение, поскольку тот или иной резистор может выдержать лишь определенное значение мощности. Если это значение будет превышено, элемент просто сгорит, так как во время прохождения тока по сопротивлению происходит выделение тепла. Поэтому на рисунке каждые линии, нанесенные на резистор, соответствуют определенной мощности.

Существуют и другие способы обозначения резисторов на схемах:

  1. На принципиальных схемах обозначается порядковый номер в соответствии с расположением (R1) и значение сопротивления, равное 12К. Буква «К» является кратной приставкой и обозначает 1000. То есть, 12К соответствует 12000 Ом или 12 килоом. Если в маркировке присутствует буква «М», это указывает на 12000000 Ом или 12 мегаом.
  2. В маркировке с помощью букв и цифр, буквенные символы Е, К и М соответствуют определенным кратным приставкам. Так буква Е = 1, К = 1000, М = 1000000. Расшифровка обозначений будет выглядеть следующим образом: 15Е – 15 Ом; К15 – 0,15 Ом – 150 Ом; 1К5 – 1,5 кОм; 15К – 15 кОм; М15 – 0,15М – 150 кОм; 1М2 – 1,5 мОм; 15М – 15мОм.
  3. В данном случае используются только цифровые обозначения. Каждое включает в себя три цифры. Первые две из них соответствуют значению, а третья – множителю. Таким образом, к множителям относятся: 0, 1, 2, 3 и 4. Они означают количество нулей, добавляемых к основному значению. Например, 150 – 15 Ом; 151 – 150 Ом; 152 – 1500 Ом; 153 – 15000 Ом; 154 – 120000 Ом.

Постоянные резисторы

Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.

Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.

Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.

Переменные резисторы

Начинающие радиолюбители нередко путают переменный резистор с конденсатором переменной емкости, поскольку внешне они очень похожи друг на друга. Тем не менее, у них совершенно разные функции, а также имеются существенные отличия в отображении на принципиальных схемах.

В конструкцию переменного резистора входит ползунок, вращающийся по резистивной поверхности. Его основной функцией является подстройка параметров, заключающаяся в изменении внутреннего сопротивления до нужного значения. На этом принципе основана работа регулятора звука в аудиотехнике и других аналогичных устройствах. Все регулировки осуществляются за счет плавного изменения напряжения и тока в электронных устройствах.

Основным параметром переменного резистора является сопротивление, способное изменяться в определенных пределах. Кроме того, он обладает установленной мощностью, которую должен выдерживать. Этими качествами обладают все типы резисторов.

На отечественных принципиальных схемах элементы переменного типа обозначаются в виде прямоугольника, на котором отмечены два основных и один дополнительный вывод, располагающийся вертикально или проходящих сквозь значок по диагонали.

На зарубежных схемах прямоугольник заменен изогнутой линией с обозначением дополнительного вывода. Рядом с обозначением ставится английская буква R с порядковым номером того или иного элемента. Рядом проставляется значение номинального сопротивления.

Соединение резисторов

В электронике и электротехнике довольно часто используются соединения резисторов в различных комбинациях и конфигурациях. Для большей наглядности следует рассматривать отдельный участок цепи с последовательным, параллельным и смешанным соединением.

При последовательном соединении конец одного резистора соединяется с началом следующего элемента. Таким образом, все резисторы подключаются друг за другом, и по ним протекает общий ток одинакового значения. Между начальной и конечной точкой существует только один путь для протекания тока. С возрастанием количества резисторов, соединенных в общую цепь, происходит соответствующий рост общего сопротивления.

Параллельным считается такое соединение, когда начальные концы всех резисторов объединяются в одной точке, а конечные выходы – в другой точке. Течение тока происходит по каждому, отдельно взятому резистору. В результате параллельного соединения с увеличением числа подключенных резисторов, возрастает и количество путей для протекания тока. Общее сопротивление на таком участке уменьшается пропорционально количеству подключенных резисторов. Оно всегда будет меньше, чем сопротивление любого резистора, подключенного параллельно.

Чаще всего в радиоэлектронике используется смешанное соединение, представляющее собой комбинацию параллельного и последовательного вариантов.

На представленной схеме параллельно соединяются резисторы R2 и R3. Последовательное соединение включает в себя резистор R1, комбинацию R2 и R3 и резистор R4. Для того чтобы рассчитать сопротивление такого соединения, вся цепь разбивается на несколько простейших участков. После этого значения сопротивлений суммируются и получается общий результат.

Полупроводники

Стандартный полупроводниковый диод состоит из двух выводов и одного выпрямляющего электрического перехода. Все элементы системы объединяются в общем корпусе из керамики, стекла, металла или пластмассы. Одна часть кристалла называется эмиттером, в связи с высокой концентрацией примесей, а другая часть, с низкой концентрацией, именуется базой. Маркировка полупроводников на схемах отражает их конструктивные особенности и технические хаpaктеристики.

Для изготовления полупроводников используется германий или кремний. В первом случае удается добиться более высокого коэффициента передачи. Элементы из германия отличаются повышенной проводимостью, для которой достаточно даже невысокого напряжения.

В зависимости от конструкции, полупроводники могут быть точечными или плоскостными, а по технологическим признакам они бывают выпрямительными, импульсными или универсальными.

Конденсаторы

Конденсатор представляет собой систему, включающую два и более электродов, выполненных в виде пластин – обкладок. Они разделяются диэлектриком, который значительно тоньше, чем обкладки конденсатора. Все устройство имеет взаимную емкость и обладает способностью к сохранению электрического заряда. На простейшей схеме конденсатор представлен в виде двух параллельных металлических пластин, разделенных каким-либо диэлектрическим материалом.

На принципиальной схеме рядом с изображением конденсатора указывается его номинальная емкость в микрофарадах (мкФ) или пикофарадах (пФ). При обозначении электролитических и высоковольтных конденсаторов, после номинальной емкости указывается значение максимального рабочего напряжения, измеряемого в вольтах (В) или киловольтах (кВ).

Переменные конденсаторы

Для обозначения конденсаторов с переменной емкостью используются два параллельных отрезка, которые пересекает наклонная стрелка. Подвижные пластины, подключаемые в определенной точке схемы, изображаются в виде короткой дуги. Возле нее проставляется обозначение минимальной и максимальной емкости. Блок конденсаторов, состоящий из нескольких секций, объединяется с помощью штриховой линии, пересекающей знаки регулировки (стрелки).

Обозначение подстроечного конденсатора включает в себя наклонную линию со штрихом на конце вместо стрелки. Ротор отображается в виде короткой дуги. Другие элементы – термоконденсаторы обозначаются буквами СК. В его графическом изображении возле знака нелинейной регулировки проставляется температурный символ.

Постоянные конденсаторы

В принципиальных электрических схемах широко используются графические обозначения конденсаторов с постоянной емкостью. Они изображаются в виде двух параллельных отрезков и выводов из середины каждого из них. Возле значка проставляется буква С, после нее – порядковый номер элемента и с небольшим интервалом – числовое обозначение номинальной емкости.

При использовании в схеме конденсатора с ориентировочной емкостью, вместо его порядкового номера наносится звездочка. Значение номинального напряжения указывается лишь для цепей с высоким напряжением. Это касается всех конденсаторов, кроме электролитических. Цифровой символ напряжения проставляется после обозначения емкости.

Соединение многих электролитических конденсаторов требует соблюдения полярности. На схемах для обозначения положительной обкладки используется значок «+» либо узкий прямоугольник. При отсутствии полярности узкими прямоугольниками помечаются обе обкладки.

Диоды и стабилитроны

Диоды относятся к простейшим полупроводниковым приборам, функционирующим на основе электронно-дырочного перехода, известного как p-n-переход. Свойство односторонней проводимости наглядно передается на графических обозначениях. Стандартный диод изображается в виде треугольника, символизирующего анод. Вершина треугольника указывает направление проводимости и упирается в поперечную черту, обозначающую катод. Все изображение пересекается по центру линией электрической цепи.

Для маркировки диодов используется буквенное обозначение VD. Оно отображает не только отдельные элементы, но и целые группы, например, диодные мосты. Тип того или иного диода указывается возле его позиционного обозначения.

Базовый символ применяется и для обозначения стабилитронов, представляющих собой полупроводниковые диоды с особыми свойствами. В катоде присутствует короткий штрих, направленный в сторону треугольника, символизирующего анод. Данный штрих располагается неизменно, независимо от положения значка стабилитрона на принципиальной схеме.

Транзисторы

У большинства радиоэлектронных компонентов имеется лишь два вывода. Однако такие элементы как транзисторы оборудованы тремя выводами. Их конструкции отличаются разнообразными типами, формами и размерами. Общие принципы работы у них одинаковые, а небольшие отличия связаны с техническими хаpaктеристиками конкретного элемента.

Транзисторы используются преимущественно в качестве электронных коммутаторов для включения и выключения различных устройств. Основное удобство таких приборов заключается в возможности коммутировать большое напряжение с помощью источника малого напряжения.

По своей сути каждый транзистор является полупроводниковым прибором, с помощью которого генерируются, усиливаются и преобразуются электрические колебания. Наибольшее распространение получили биполярные транзисторы с одинаковой электропроводностью эмиттера и коллектора.

На схемах они обозначаются буквенным кодом VT. Графическое изображение представляет собой короткую черточку, от середины которой отходит линия. Данный символ обозначает базу. К ее краям проводятся две наклонные линии под углом 60 0 , отображающие эмиттер и коллектор.

Электропроводность базы зависит от направления стрелки эмиттера. Если она направлена в сторону базы, то электропроводность эмиттера – р, а у базы – n. При направлении стрелки в противоположную сторону, эмиттер и база меняют электропроводность на противоположное значение. Знание электропроводности необходимо для правильного подключения транзистора к источнику питания.

Для того чтобы обозначение на схемах радиодеталей транзистора было более наглядным, оно помещается в кружок, означающий корпус. В некоторых случаях выполняется соединение металлического корпуса с одним из выводов элемента. Такое место на схеме отображается в виде точки, проставляемой там, где вывод пересекается с символом корпуса. Если же на корпусе имеется отдельный вывод, то линия, обозначающая вывод, может подсоединяться к кружку без точки. Возле позиционного обозначения транзистора указывается его тип, что позволяет существенно повысить информативность схемы.


Калибр пробка для отверстий гост

Калибр пробка для отверстий гост Калибр пробка для отверстий гост Калибр-Центр Каталог ГОСТы на калибры Калибры гладкие для размеров до 500 мм. Допуски Калибры гладкие для размеров до 500...

12 05 2024 1:22:15

Как убрать сульфатацию пластин аккумулятора

Как убрать сульфатацию пластин аккумулятора Как убрать сульфатацию пластин аккумулятора Автомобильный аккумулятор, десульфатация: способы восстановления Современный автомобильный аккумулятор, как...

11 05 2024 13:48:28

Как подключить зх фазный двигатель на 220

Как подключить зх фазный двигатель на 220 Как подключить зх фазный двигатель на 220 Подключение трехфазного двигателя к однофазной сети Асинхронные трехфазные двигатели, а именно их, из-за...

10 05 2024 10:48:51

Расчет автомата по мощности онлайн

Расчет автомата по мощности онлайн Расчет автомата по мощности онлайн Расчет электрического тока по мощности: формулы, онлайн расчет, выбор автомата Проектируя электропроводку в помещении,...

09 05 2024 10:13:41

Как прозвонить провод с помощью мультиметра

Как прозвонить провод с помощью мультиметра Как прозвонить провод с помощью мультиметра Как прозванивать мультиметром Один из самых востребованных, особенно в быту, режимов работы мультиметра – это...

08 05 2024 1:46:13

Программа для рисования электрических схем онлайн

Программа для рисования электрических схем онлайн Программа для рисования электрических схем онлайн Список программ для проектирования электронных схем В данной статье будет представлено 20 лучших...

07 05 2024 11:16:25

Снегоуборщик бензиновый MTD ME 61: обзор, отзывы

Снегоуборщик бензиновый MTD ME 61: обзор, отзывы Снегоуборщик бензиновый MTD ME 61: обзор, отзывы Снегоуборщик бензиновый MTD ME 61 MTD ME 61 – производительный снегоуборщик с самоходным колесным шасси,...

06 05 2024 5:28:40

Как прозвонить диод мультиметром на плате

Как прозвонить диод мультиметром на плате Как прозвонить диод мультиметром на плате Как проверить диод мультиметром. Подробная инструкция В данной статье объясним как проверить диод мультиметром....

05 05 2024 15:46:22

Микрофонный предусилитель своими руками схема

Микрофонный предусилитель своими руками схема Микрофонный предусилитель своими руками схема Предусилитель для микрофона. Подборка схем Предусилитель для микрофона, он же предварительный усилитель или...

04 05 2024 2:57:50

Теодолит электронный принцип работы

Теодолит электронный принцип работы Теодолит электронный принцип работы ЭЛЕКТРОННЫЕ ТЕОДОЛИТЫ ТЕХНИЧЕСКОЙ ТОЧНОСТИ Теодолиты в течение веков прошли длительную эволюцию (приложение А). От...

03 05 2024 2:19:29

Как поставить выключатель на светильник

Как поставить выключатель на светильник Как поставить выключатель на светильник Подключаем выключатель с подсветкой При выборе выключателей для освещения жилых помещений, мы всегда сталкиваемся...

02 05 2024 7:45:45

Как перемотать леску на катушку

Как перемотать леску на катушку Как перемотать леску на катушку Как намотать леску на катушку – основные методы и советы Спиннинг на сегодняшний день является популярнейшей снастью,...

01 05 2024 17:27:39

Гелевые аккумуляторы технические хаpaктеристики

Гелевые аккумуляторы технические хаpaктеристики Гелевые аккумуляторы технические хаpaктеристики Гелевые аккумуляторы:описание,виды,устройство,зарядка. Современная наука развивается в ускоренном темпе –...

30 04 2024 22:45:34

Безбашенка регулировка давления видео

Безбашенка регулировка давления видео Безбашенка регулировка давления видео Регулировка и настройка реле давления у насосной станции Реле давления – это часть насосной станции, которая...

29 04 2024 22:51:28

Как подобрать кабель канал для кабеля

Как подобрать кабель канал для кабеля Как подобрать кабель канал для кабеля Как выбрать кабель-канал для монтажа электропроводки В любом цивилизованном доме, офисе, или в помещении...

28 04 2024 6:57:37

Какие батарейки можно заряжать а какие нет

Какие батарейки можно заряжать а какие нет Какие батарейки можно заряжать а какие нет Какие батарейки можно заряжать и как это сделать Портативные энергосодержащие устройства — незаменимая вещь в...

27 04 2024 9:44:24

Музыкальная статистика 2018: размер 3/4 — мёртв

Музыкальная статистика 2018: размер 3/4 — мёртв  Статистика музыки в 2018 году: какие тональности, размеры, темп, аккорды и аранжировки были популярны в музыке прошедшего года? Вы удивитесь!...

26 04 2024 6:23:33

Как травить металл в домашних условиях

Как травить металл в домашних условиях Как травить металл в домашних условиях Как травить металл в домашних условиях – пошаговый процесс электрохимического травления Можно травить металл...

25 04 2024 21:58:30

Как проверить о е после шипящих

Как проверить о е после шипящих Как проверить о е после шипящих Азбучные истины Интеpaктивный диктант Учебник ГРАМОТЫ: орфография Учебник ГРАМОТЫ: пунктуация Имена и названия....

24 04 2024 9:56:52

Балки стальные двутавровые хаpaктеристики

Балки стальные двутавровые хаpaктеристики Балки стальные двутавровые хаpaктеристики Двутавровая балка – «основательный» металлопрокат В строительстве очень часто применяется двутавровая балка,...

23 04 2024 14:21:14

Размеры пропанового баллона 50 литров

Размеры пропанового баллона 50 литров Размеры пропанового баллона 50 литров Габариты газового баллона 50 литров Пропановый баллон 50 литров Форма заказа продукции Оставьте свои контакты и...

22 04 2024 13:24:33

Виды точечных светильников для гипсокартона

Виды точечных светильников для гипсокартона Виды точечных светильников для гипсокартона Особенности точечных светильников Для обеспечения необходимого освещения в помещении и в эстетических целях...

21 04 2024 14:11:57

Куда звонить если отключили свет барнаул

Куда звонить если отключили свет барнаул Куда звонить если отключили свет барнаул Отключили свет в доме: куда звонить, что делать и как быть Отключили свет в доме: куда звонить? Именно этот...

20 04 2024 5:34:20

Какие бывают метрические резьбы

Какие бывают метрические резьбы Какие бывают метрические резьбы Типы резьб и их хаpaктеристики Резьба - это поверхность, образованная при винтовом движении произвольного плоского контура...

19 04 2024 13:11:43

Чем защитить металл от коррозии

Чем защитить металл от коррозии Чем защитить металл от коррозии Защита от коррозии и окрашивание металла В бытовых условиях чаще приходится иметь дело со сталью, цинком и алюминием.Сталь...

18 04 2024 20:24:53

Как сводить музыку, когда нет времени, и достигать больших результатов в сжатые сроки

Как сводить музыку, когда нет времени, и достигать больших результатов в сжатые сроки  Американский звукорежиссер Бьёргвин Бенедиктссон рассказывает, как заниматься музыкой когда нет времени, а также повысить свою эффективность....

17 04 2024 16:30:32

Самодельный фрезерный станок с чпу чертежи

Самодельный фрезерный станок с чпу чертежи Самодельный фрезерный станок с чпу чертежи Самодельный фрезерный станок с Ч П У: собираем своими руками Зная о том, что фрезерный станок с Ч П У является...

16 04 2024 16:39:51

Как включается амперметр в схему

Как включается амперметр в схему Как включается амперметр в схему Подключение амперметра и вольтметра в сети постоянного и переменного тока Постоянный ток не меняет направления во...

15 04 2024 11:15:35

Waves SuperRack объединяет возможности плагинов MultiRack, SoundGrid и StudioRack для управления цифровыми студиями

Waves SuperRack объединяет возможности плагинов MultiRack, SoundGrid и StudioRack для управления цифровыми студиями  Плагин Waves SuperRack создан для эффективного управления плагинами и оборудованием во время живых выступлений. Контроль 128 каналов и другие крутые фишки....

14 04 2024 2:29:22

Какие насадки бывают на болгарку

Какие насадки бывают на болгарку Какие насадки бывают на болгарку Полировочные насадки для дерева на болгарку Угловая шлифовальная машина (УШМ) или болгарка — инструмент, необходимый в...

13 04 2024 13:12:52

Легирование стали что это

Легирование стали что это Легирование стали что это Легированная сталь Содержание статьи В современном мире имеется большое количество разновидностей стали. Это один из самых...

12 04 2024 18:37:25

Первый взгляд на Isla Instruments SP 2400 — духовную наследницу драм-машины E-Mu SP-1200

Первый взгляд на Isla Instruments SP 2400 — духовную наследницу драм-машины E-Mu SP-1200  Компания Isla Instruments показала, на что способна драм-машина SP 2400. Инструмент представляет собой современную версию мощной E-Mu SP-1200 1987 года....

11 04 2024 20:53:18

Чем отличаются точильные камни

Чем отличаются точильные камни Чем отличаются точильные камни Камень точильный – основные типы и особенности применения Существует целая масса эффективных способов для заточки ножей....

10 04 2024 5:24:43

Как нарисовать шестиугольник с помощью линейки

Как нарисовать шестиугольник с помощью линейки Как нарисовать шестиугольник с помощью линейки Пятиугольник Здравствуйте коллеги. Сегодня построим правильный пятиугольник в окружности, попробуем...

09 04 2024 15:59:58

Как заполнять спецификацию к чертежу

Как заполнять спецификацию к чертежу Как заполнять спецификацию к чертежу Сборочный чертеж. Спецификация Сборочный чертеж выполняется на стадии разработки рабочей документации. Сборочный...

08 04 2024 6:33:22

Классификация транзисторов по функциональному назначению

Классификация транзисторов по функциональному назначению Классификация транзисторов по функциональному назначению Транзисторы. Классификация, хаpaктеристики, принцип действия и назначение. Транзи́стор (англ....

07 04 2024 18:19:14

Энтузиаст сделал полностью работающую электрогитару из восьми огромных жевательных леденцов

Энтузиаст сделал полностью работающую электрогитару из восьми огромных жевательных леденцов  Ценителям Flying V и сладостей явно придется по вкусу электрогитара из конфет, сделанная очередным умельцем с просторов Youtube....

06 04 2024 9:44:38

Бензиновая снегоуборочная машина PATRIOT PS 710E 426108475: обзор, отзывы

Бензиновая снегоуборочная машина PATRIOT PS 710E 426108475: обзор, отзывы Бензиновая снегоуборочная машина PATRIOT PS 710E 426108475: обзор, отзывы Снегоуборщик бензиновый Patriot PS 710E Patriot PS 710E – универсальный...

05 04 2024 3:17:59

Как правильно выпаять микросхему паяльником

Как правильно выпаять микросхему паяльником Как правильно выпаять микросхему паяльником Как выпаять микросхему из платы паяльником? Автор: Владимир Васильев · Опубликовано 15 мая 2017 · Обновлено 25...

04 04 2024 11:19:35

Описать метод определения твердости по бринеллю

Описать метод определения твердости по бринеллю Описать метод определения твердости по бринеллю Методы измерения твердости металлов Существует довольно большое количество различных механических...

03 04 2024 16:48:35

Почему стиральная машинка при отжиме сильно прыгает

Почему стиральная машинка при отжиме сильно прыгает Почему стиральная машинка при отжиме сильно прыгает Прыгает стиральная машинка. В основном при отжиме. Какие причины и что делать? Стиральная машинка...

02 04 2024 1:37:31

Блоки монтажные с крюком

Блоки монтажные с крюком Блоки монтажные с крюком Блоки с крюком / ушком Диаметр каната, мм Диаметр каната, мм Диаметр каната, мм Диаметр каната, мм Диаметр каната, мм Диаметр...

01 04 2024 2:19:10

Как узнать мощность батареи телефона

Как узнать мощность батареи телефона Как узнать мощность батареи телефона Вот, как проверить ёмкость аккумулятора телефона без специальных навыков Вам не потребуются специальные навыки, чтобы...

31 03 2024 18:16:54

Как очистить гуся от перьев быстро

Как очистить гуся от перьев быстро Как очистить гуся от перьев быстро Как снять кожу с перьями с гуся Гуси и утки — отличные домашние питомцы для хозяйств в пригородах и сельской местности....

30 03 2024 12:55:30

Как проверить антенную розетку

Как проверить антенную розетку Как проверить антенную розетку Подключение ТВ кабеля к розетке Legrand, Schneider. Схемы и виды розеток. Слаботочных кабелей при домашней разводке сетей с...

29 03 2024 10:24:11

Основные области применения алюминия

Основные области применения алюминия Основные области применения алюминия Алюминий. Свойства алюминия. Применение алюминия Алюминий в чистом виде впервые выделен Фридрихом Велером. Немецкий...

28 03 2024 21:27:29

ТЕСТ: какой синтезатор появился раньше?

ТЕСТ: какой синтезатор появился раньше?  Этот тест про синтезаторы проверит, как хорошо ты знаком с разными инструментами. Мы спрашиваем модели, ты говоришь, кто появился раньше!...

27 03 2024 2:14:43

На Reverb продают редкую золотую версию BOSS DS-1 Distortion

На Reverb продают редкую золотую версию BOSS DS-1 Distortion  На площадке Reverb засветился золотой BOSS DS-1 Distortion. Педаль очень редкая — более 20 лет назад японцы сделали всего 6 таких педалей....

26 03 2024 15:32:59

Чем залудить жало паяльника

Чем залудить жало паяльника Чем залудить жало паяльника Как облудить необгораемое жало у паяльника Необгораемые жала паяльников требуют деликатного отношения. Их ни в коем случае...

25 03 2024 20:12:21

Поделки из фанеры чертежи и рисунки

Поделки из фанеры чертежи и рисунки Поделки из фанеры чертежи и рисунки Оригинальные поделки из фанеры своими руками - технология, варианты изготовления, фото идеи Поделки из фанеры - один...

24 03 2024 21:47:33

Еще:
Музыка -1 :: Музыка -2 :: Музыка -3 :: Музыка -4 :: Музыка -5 :: Музыка -6 :: Музыка -7 :: Музыка -8 :: Музыка -9 :: Музыка -10 :: Музыка -11 ::